Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure.
نویسندگان
چکیده
Changes in chromatin structure have frequently been correlated with changes in transcription. However, the cause-and-effect relationship between chromatin structure and transcription has been hard to determine. In addition, identifying the proteins that regulate chromatin structure has been difficult. Recent evidence suggests that a functionally related set of yeast transcriptional activators (SNF2/SWI2, SNF5, SNF6, SWI1, and SWI3), required for transcription of a diverse set of genes, may affect chromatin structure. We now present genetic and molecular evidence that at least two of these transcriptional activators, SNF2/SWI2 and SNF5, function by antagonizing repression mediated by nucleosomes. First, the transcriptional defects in strains lacking these SNF genes are suppressed by a deletion of one of the two sets of genes encoding histones H2A and H2B, (hta1-htb1) delta. Second, at one affected promoter (SUC2), chromatin structure is altered in snf2/swi2 and snf5 mutants, and this chromatin defect is suppressed by (hta1-htb1) delta. Finally, analysis of chromatin structure at a mutant SUC2 promoter, in which the TATA box has been destroyed, demonstrates that the differences in SUC2 chromatin structure between SNF5+ and snf5 mutant strains are not simply an effect of different levels of SUC2 transcription. Thus, these results strongly suggest that SNF2/SWI2 and SNF5 cause changes in chromatin structure and that these changes allow transcriptional activation.
منابع مشابه
Two human homologues of Saccharomyces cerevisiae SWI2/SNF2 and Drosophila brahma are transcriptional coactivators cooperating with the estrogen receptor and the retinoic acid receptor.
A set of genes (SWI1, SWI2/SNF2, SWI3, SNF5 and SNF6) in Saccharomyces cerevisiae are required for transcription of a variety of yeast genes. It was recently reported that the mammalian glucocorticoid receptor failed to activate transcription when transiently expressed in swi1-, swi2- or swi3- yeast strains. We report here that two highly related human cDNAs, hSNF2 alpha and -beta, encode amino...
متن کاملA human protein with homology to Saccharomyces cerevisiae SNF5 interacts with the potential helicase hbrm.
In yeast, the SNF/SWI complex is involved in transcriptional activation of several inducible promoters, possibly by causing a local modification of the chromatin structure. Recently, two human homologues of the SNF2/SWI2 protein have been isolated, hbrm and BRG-1. In addition, a complex containing one of the SNF2/SWI2 homologues and having an in vitro activity similar to the yeast complex has b...
متن کاملThe Drosophila snr1 and brm proteins are related to yeast SWI/SNF proteins and are components of a large protein complex.
During most of Drosophila development the regulation of homeotic gene transcription is controlled by two groups of regulatory genes, the trithorax group of activators and the Polycomb group of repressors. brahma (brm), a member of the trithorax group, encodes a protein related to the yeast SWI2/SNF2 protein, a subunit of a protein complex that assists sequence-specific activator proteins by all...
متن کاملSNF11, a new component of the yeast SNF-SWI complex that interacts with a conserved region of SNF2.
The yeast SNF-SWI complex is required for transcriptional activation of diverse genes and has been shown to alter chromatin structure. The complex has at least 10 components, including SNF2/SWI2, SNF5, SNF6, SWI1/ADR6, and SWI3, and has been widely conserved in eukaryotes. Here we report the characterization of a new component. We identified proteins that interact in the two-hybrid system with ...
متن کاملInvolvement of the Arabidopsis SWI2/SNF2 chromatin remodeling gene family in DNA damage response and recombination.
The genome of plants, like that of other eukaryotes, is organized into chromatin, a compact structure that reduces the accessibility of DNA to machineries such as transcription, replication, and DNA recombination and repair. Plant genes, which contain the characteristic ATPase/helicase motifs of the chromatin remodeling Swi2/Snf2 family of proteins, have been thoroughly studied, but their role ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genes & development
دوره 6 12A شماره
صفحات -
تاریخ انتشار 1992